Analisis Citra Berbasis Objek Pada Bangunan Pantai di Teluk Manado

Chalvin Juniarto(1), Joyce Christian Kumaat(2), Denny Maliangkay(3),


(1) Program Studi Geografi, Fakultas Ilmu Sosial dan Hukum, Universitas Negeri Manado
(2) Program Studi Geografi, Fakultas Ilmu Sosial dan Hukum, Universitas Negeri Manado
(3) Program Studi Geografi, Fakultas Ilmu Sosial dan Hukum, Universitas Negeri Manado
Corresponding Author

Abstract


This research aims to analyze the spatial distribution and characteristics of coastal buildings in Manado Bay using an object-based image analysis approach. The research method used is descriptive-analytical, utilizing 2023 spatial data obtained from Sentinel 2A satellite imagery. The analysis was conducted through segmentation and classification techniques based on Object-Based Image Analysis (OBIA) using eCognition software. The results showed that the OBIA method was able to identify and separate objects based on spectral, shape and texture attributes. The classification of the Manado Bay area, which has an area of 4,217 hectares, shows that this area is dominated by vegetation and open land (1,466 ha), followed by sea water bodies (1,566 ha), built-up land (785 ha), shallow water habitat (386 ha), and other objects (15 ha). The total accuracy of 74.36% through the guided method, explains the effectiveness in identifying the main features in the study area as the optimal approach used in OBIA. The results of this study illustrate the dynamics of the development of Manado Bay coastal area through the distribution pattern and characteristics of the buildings detected. The concentration of built-up land in the central part of the bay reflects the dominance of economic activities, such as trade, industry, services and tourism. On the other hand, the presence of vegetation and open land in the outer area of the bay shows great potential for local economic development, but also faces the threat of land conversion that can affect the balance of coastal ecosystems.

References


Adji, A. S. (2022). Metode Geobia Dalam Klasifikasi Zona Geomorfologi Terumbu Karang Di Pulau Pombo. JGE (Jurnal Geofisika Eksplorasi), 8(2), 93–102. https://doi.org/10.23960/jge.v8i2.175

Agustina, F. D., & Rokhmana, C. A. (2019). Ekstraksi Bangunan Pada Ortofoto Menggunakan Teknik Klasifikasi Citra Berbasis Objek. Elipsoida : Jurnal Geodesi Dan Geomatika, 2(02), 45–52. https://doi.org/10.14710/elipsoida.2019.4895

Alfiansyah, M., Dewi Fazlina, Y., & Rusdi, M. (2023). Proses Segementasi pada Object Based Image Analysis (OBIA) untuk Pemetaan Lahan Basah. Jurnal Ilmiah Mahasiswa Pertanian, 8(4), 709–715. www.jim.usk.ac.id/JFP

Anggoro, A., Siregar, V. P., & Agus, S. B. (2017). Klasifikasi Multikskala Untuk Pemetaan Zona Geomorfologi dan Habitat Bentik Menggunakan Metode OBIA di Pulau Pari. Jurnal Penginderaan Jauh Dan Pengolahan Data Citra Digital, 14(2), 89–93. https://doi.org/10.30536/j.pjpdcd.1017.v14.a2622

Benz, U. C., Hofmann, P., Willhauck, G., Lingenfelder, I., & Heynen, M. (2004). Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS Journal of Photogrammetry and Remote Sensing, 58(3), 239–258. https://doi.org/https://doi.org/10.1016/j.isprsjprs.2003.10.002

Blaschke, T. (2010). Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 65(1), 2–16. https://doi.org/10.1016/j.isprsjprs.2009.06.004

Buchori, I. (2011). Konsep Sistem Informasi Rencana Tata Ruang Wilayah Untuk Kabupaten/Kota Di Indonesia. Tataloka, 13(4), 224–234.

Burnett, C., & Blaschke, T. (2003). A multi-scale segmentation/object relationship modelling methodology for landscape analysis. Ecological Modelling, 168(3), 233–249. https://doi.org/https://doi.org/10.1016/S0304-3800(03)00139-X

Congalton, R. G., & Green, K. (2019). Assessing the Accuracy of Remotely Sensed Data: Principles and Practices (3rd ed.). CRC Press.

Dahuri, R., Rais, J., Ginting, S. P., & Sitepu, M. J. (2008). Pengelolaan Sumber Daya Wilayah Pesisir Dan Lautan Secara Terpadu (Cet 4). Pradnya Paramita.

Devi, N. S., & Santosa, P. B. (2022). Analisis Geospasial Perubahan Ruang Terbuka Hijau Wilayah Kota Purwokerta dari Tahun 2013 sampai 2020. JGISE: Journal of Geospatial Information Science and Engineering, 5(2), 59. https://doi.org/10.22146/jgise.74620

Farajzadeh, Z., Saadatseresht, M., & Alidoost, F. (2023). Automatic Building Extraction From Uav-Based Images And Dsms Using Deep Learning. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 10(4/W1-2022), 171–177. https://doi.org/10.5194/isprs-annals-X-4-W1-2022-171-2023

Firmansyah, S., Gaol, J., & Susilo, S. B. (2019). Comparison of SVM and Decision Tree Classifier with Object Based Approach for Mangrove Mapping to Sentinel-2B Data on Gili Sulat, Lombok Timur. Jurnal Pengelolaan Sumberdaya Alam Dan Lingkungan, 9(3), 746–757. https://doi.org/10.29244/jpsl.9.3.746-757

Gonzalez, R. C., & Woods, R. E. (2018). Digital Image Processing. In Pearson Education Limited (4th ed.). https://doi.org/10.1201/9781003002826-2

Gulo, F. W. R. (2024). Peran Sistem Informasi Geografis Untuk Pemetaan Bencana. Kohesi: Jurnal Multidisiplin Saintek, 4(12), 1–23.

Gupta, N., & Bhadauria, H. S. (2014). Object based Information Extraction from High Resolution Satellite Imagery using eCognition. IJCSI International Journal of Computer Science Issues, 11(3), 139–144. file:///C:/Users/Jefferson/Downloads/71755beb95626b29efb02e6a102d49f4.pdf

Haklay, M., & Weber, P. (2008). OpenStreetMap: User-Generated Street Maps. IEEE Pervasive Computing, 7(4), 12–18. https://doi.org/10.1109/MPRV.2008.80

Haryeni, Kamal, E., Razak, A., & Prarikeslan, W. (2024). Strategi Adaptasi Lingkungan Dan Pengelolaan Terpadu Di Pesisir Penjaringan Jakarta Utara. Gudang Jurnal Multidisiplin Ilmu, 2(12), 260–265.

Jensen, J. R. (2014). Remote Sensing of the Environment: An Earth Resource Perspective (2nd ed.). Pearson Education Limited.

Jessika, Y., Dharma, I. S., Dirgayusa, I. G. N., & Prasetyo, A. (2022). Studi Laboratorium Bangunan Pantai Untuk Mereduksi Gelombang Tsunami Kasus Palu, Sulawesi Selatan. Journal of Marine and Aquatic Sciences, 8(1), 143–154. https://doi.org/10.24843/jmas.2022.v08.i01.p16

Jiang, N., Zhang, J. X., Li, H. T., & Lin, X. G. (2008). Object-Oriented Buinding Extraction By Dsm and Very High-Resolution Orthoimages. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37, 441–446.

Kamal, S. A., Rondonuwu, D. M., & Warouw, F. (2023). Analisis Rencana Zonasi Wilayah Pesisir Kota Manado Berbasis Mitigasi Bencana. Jurnal Spasial, 11(1), 29–39.

Kincaid, L. (2024). Utilizing Technologies for Coastal Zone Management : Applications of GIS and Remote Sensing. Journal of Coastal Zone Management, 27(1000637), 26–27. https://doi.org/10.35248/2473-3350.24.27.637

Laiskodat, D. E., Lay, B. P., & Foju, M. K. M. (2023). Pengaruh Pembangunan Di Pemukiman Pesisir Pantai Di Kelurahan Oesapa Terhadap Rencana Tata Ruang Kota Kupang. Jurnal Ilmiah Dan Karya Mahasiswa, 1(4), 369–392. kalau tdk ad isikan link dari gogle

Liu, W., Yang, M. Y., Xie, M., Guo, Z., Li, E. Z., Zhang, L., Pei, T., & Wang, D. (2019). Accurate building extraction from fused DSM and UAV images using a chain fully convolutional neural network. Remote Sensing, 11(24), 1–18. https://doi.org/10.3390/rs11242912

Liu, Z. J., Wang, J., & Liu, W. P. (2005). Building extraction from high resolution imagery based on multi-scale object oriented classification and probabilistic hough transform. International Geoscience and Remote Sensing Symposium (IGARSS), 4(C), 2250–2253. https://doi.org/10.1109/IGARSS.2005.1525421

Maharani, S., Suhana, M. P., & Kurniawati, E. (2023). Pemetaan Perubahan Garis Pantai di Pantai Tanjung Siambang, Pulau Dompak Dengan Metode Digital Shoreline Analysis System (DSAS). Jurnal Kelautan: Indonesian Journal of Marine Science and Technology, 16(2), 177–190. https://doi.org/10.21107/jk.v16i2.18298

Niagara, Y., Ernawati, & Purwandari, E. P. (2020). Pemanfaatan Citra Penginderaan Jauh Untuk Pemetaan Klasifikasi Tutupan Lahan Menggunakan Metode Unsupervised K-Means Berbasis Web GIS (Studi Kasus Sub-DAS Bengkulu Hilir). Rekursif: Jurnal Informatika, 8(1), 100–110. https://ejournal.unib.ac.id/index.php/rekursif/article/download/8478/5706

Nur, A. A. J., & Nurwati, N. (2023). Dampak Reklamasi Terhadap Kerusakan Lingkungan Dan Kemiskinan Di Kota Makassar. Sosioglobal : Jurnal Pemikiran Dan Penelitian Sosiologi, 7(2), 152–163. https://jurnal.unpad.ac.id/sosioglobal/article/view/47601

Sallaye, M., Mezouar, K., Dahmani, A., & Cherif, Y. S. (2022). Coastal vulnerability assessment and identification of adaptation measures to climate change between Cape Matifou and Cape Djinet Algeria. Geo-Eco-Marina, 2022(28), 181–193. https://doi.org/10.5281/zenodo.7493268

Sari, C. A., & Syah, A. F. (2021). Pemetaan Habitat Bentik Pulau Salarangan Menggunakan Metode Object-Based Image Analysis. Rekayasa, 14(1), 128–136. https://doi.org/10.21107/rekayasa.v14i1.7996

Somantri, L. (2024). Studi Komparasi Teknik Klasifikasi berbasis Objek terhadap Citra Resolusi Spasial Menengah dan Tinggi untuk Pemetaan Tutupan Lahan di Sebagian Kabupaten Kulonprogo. Majalah Geografi Indonesia, 38(1), 1–7. https://doi.org/10.22146/mgi.70636

Yang, Y., Wang, Y., Zhou, Q., & Gong, J. (2008). Urban expansion analysis based on spatial variables derived from multi-temporal remote sensing imagery. Proceedings of SPIE - The International Society for Optical Engineering, 7144(October), 714412. https://doi.org/10.1117/12.812733

Zamdial, Hartono, D., Bakhtiar, D., Nofridiansyah, E., Renta, P. P., Muqsit, A., & Anggoro, A. (2020). Studi Identifikasi Kerusakan Wilayah Pesisir Di Kabupaten Bengkulu Utara Provinsi Bengkulu. Jurnal Enggano, 5(3), 510–528.

Zhang, L., Jia, K., Li, X., Yuan, Q., & Zhao, X. (2014). Multi-scale segmentation approach for object-based land-cover classification using high-resolution imagery. Remote Sensing Letters, 5(1), 73–82. https://doi.org/10.1080/2150704X.2013.875235


Full Text: PDF

Article Metrics

Abstract View : 29 times
PDF Download : 5 times

DOI: 10.36412/jepst.v6i1.3888

DOI (PDF): https://doi.org/10.36412/jepst.v6i1.3888.g1772

Refbacks

  • There are currently no refbacks.